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Abstract 

Density-functional formalism is applied to study the phase equilibria in the U-Zr system. 

The obtained ground-state properties of the γ (bcc) and δ (C32) phases are in good 

agreement with experimental data. The decomposition curve for the γ-based U-Zr 

solutions is calculated. We argue that stabilization of the δ-UZr2 phase relative to the α-

Zr (hcp) structure is due to an increase of the Zr d-band occupancy that occurs when U is 

alloyed with Zr.  
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Introduction  

Zr-based actinide alloys, particularly U-Pu-Zr, proved to be very promising fuels 

for liquid metal fast breeder reactors because of their advantage in view of superior 

performance, reactor safety, and fuel cycle economics [1]. The main goal of fast breeder 

reactors is to achieve a so-called “high burn-up” fissioning all types of transuranic 

elements thus providing an appropriate solution to spent fuel recycling and complete 

transmutation of long-lived minor actinides (Np, Am, and Cm), which results in creation 

of a closed nuclear fuel cycle with future disposition of the nuclear waste products in a 

single geological repository [2].  

In spite of the renewed interest in the Zr-based actinide alloys from the practical 

view point, very little has been done to understand fundamental aspects of phase 

equilibria in these systems.  It was established [3] that the U-Zr system is characterized 

by the complete solubility of the body centered cubic high-temperature phases, γ-U and 

β-Zr, that is usually referred to in phase diagrams by ‘γ-phase’ solid solutions.  Below T 

≈ 995 K, these solutions separate into a relatively flat miscibility gap, which ranges from 

about 10 to 40 at. % of Zr, and spans about 30 K below the critical point. The 

intermediate δ-phase is formed on cooling from the γ-phase around UZr2 stoichiometry 

with the homogeneity range from 63 to 82 at. % Zr [4].  

Both γ- and δ- phases in the U-Zr system play an important role in metallurgical 

reactions that occur during the nuclear burn-up [5-7]. Diffusion data and thermodynamic 

properties of the U-Zr alloys are very important for understanding phenomena occurring 

in the fuel rods under irradiation. That is why in order to study redistribution of Zr in the 
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U-Zr fuel rod one should perform, as the first step, ab initio calculations of the 

decomposition curve for the γ-U-Zr system, and calculate its basic ground-state 

properties. In this paper we present results of these calculations. 

Another remarkable feature of the U-Zr system is the δ-UZr2 phase, which 

solidifies in a modified C32 (AlB2)-type crystal structure. It is well known that the high-

temperature Zr- or Ti-based solid solutions may transform into the so-called metastable 

ω-phase at low temperatures [8]. This phase can also be stabilized from the α (hcp) phase 

of Zr (Ti) under compression [8, 9]. According to the X-ray and high resolution neutron 

diffraction structure analysis of the UZr2 compound [4, 10], Zr atom occupies the “Al” 

position (0, 0, 0) of the hexagonal cell in the (AlB2)-type crystal structure and a random 

mixture of U and Zr atoms occupies the “B” positions (⅔, ⅓, ½) and (⅓, ⅔, ½). Akabori 

et al. [11] performed interdiffusion coefficients measurements in the δ-UZr2 phase by 

means of an electron-probe micro-analyzer, and found them to be significantly smaller 

than those extrapolated from the γ-U-Zr solid solutions [7] to the δ-phase. Finally, Ogawa 

et al. [12] suggested that the δ-UZr2 intermediate phase could be regarded as an ω-phase 

solid solution that is stabilized against the α-Zr (hcp) structure by addition of U due to 

increase of the Zr d-band occupancy. In this paper we present results of calculations of 

the ground-state properties of the δ-UZr2 phase and verified the hypothesis of this 

stabilization suggested in Ref. [12].   

In our calculations we employ three complementary computational techniques: (i) 

scalar-relativistic Green’s function technique based on the Korringa-Kohn-Rostoker 

(KKR) method within the atomic-sphere approximation (ASA), (ii) the scalar-relativistic 
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exact muffin-tin orbital method (EMTO), and (iii) the all-electron full-potential linear 

muffin-tin orbital method (FPLMTO) that accounts for all relativistic effects.  

 

2. Computational details 

The calculations we have referred to as KKR-ASA are performed using the scalar 

relativistic (no spin-orbit coupling) Green’s function technique based on the KKR 

method within the atomic-sphere approximation [13-16]. The calculations are performed 

for a basis set including valence spdf orbitals and the semi-core 6p states for uranium 

whereas the core states are recalculated at every iteration (soft-core approximation). For 

the electron exchange and correlation energy functional, the generalized gradient 

approximation (GGA) is adopted [17]. Integration over the Brillouin zone is performed 

using the special k-point technique [18]. The moments of the density of states, needed for 

the kinetic energy and valence charge density, are calculated by integrating Green’s 

function over a complex energy contour. The equilibrium density of the U-Zr system is 

obtained from a Murnaghan [19] fit. 

In order to treat compositional disorder the KKR-ASA method is combined with 

the coherent potential approximation (CPA) [20]. The ground-state properties of the 

random U-Zr alloys are obtained from KKR-ASA-CPA calculations with the Coulomb 

screening potential and energy [21-23]. The screening constants are determined from 

supercell calculations using locally self-consistent Green’s function method (LSGF) [24]. 

The effective cluster interactions (ECI), used in Monte Carlo (MC) simulations, are 

obtained from the screened generalized-perturbation method (SGPM) [21, 22, 25].  
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Though the KKR-ASA formalism is well suited to treat close-packed structures it 

could produce a significant error when being applied to ‘open’ structures such as C32. 

That is why we use another Green’s function technique, based on the EMTO formalism, 

in present calculations, which is not limited by geometrical restrictions imposed by the 

ASA. 

The EMTO calculations are performed using scalar-relativistic Green’s function 

technique based on the improved screened KKR method, where the one-electron potential 

is represented by optimized overlapping muffin-tin (OOMT) potential spheres [26, 27].  

As an output of the EMTO calculations, one can determine self-consistent Green’s 

function of the system and the complete, non-spherically symmetric charged density. 

Finally, the total energy is calculated using the full charge-density technique [28]. Like in 

the case of KKR-ASA calculations, GGA is used for the electron exchange and 

correlation approximation, EMTO is combined with the CPA for calculation of the total 

energy of chemically random alloy. Integrations over the Brillouin zone, complex energy 

contour, and the choice of the screening constants are identical to the KKR-ASA method. 

For the elemental metals, the most accurate and fully relativistic calculations are 

performed using an all-electron approach where the relativistic effects, including spin-

orbit coupling, are accounted for. Although unable to model disorder in the CPA sense it 

provides important information for the metals, and also serves to confirm the CPA 

calculations mentioned above. For this purpose we use a version of the FPLMTO [29-

31]. The “full potential” in FPLMTO refers to the use of non-spherical contributions to 

the electron charge density and potential. This is accomplished by expanding the charge 

density and potential in cubic harmonics inside non-overlapping muffin-tin spheres and 
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in a Fourier series in the interstitial region. We use two energy tails associated with each 

basis orbital, and for U’s semi-core 6s, 6p states and valence states (7s, 7p, 6d, and 5f) 

these pairs are different. With this ‘double basis’ approach we use a total of six energy 

tail parameters and a total of 12 basis functions per atom. Spherical harmonic expansions 

are carried out up to lmax= 6 for the bases, potential, and charge density. As in the case of 

the KKR-ASA and EMTO methods, GGA is used for the electron exchange-correlation 

approximation. A special quasi-random structure (SQS) method was used to treat the 

compositional disorder within the FPLMTO formalism [32]. 

 

3. Ground-state properties and decomposition curve of the γ-U-Zr solid solutions 

Figures 1 (a-c) show results of KKR-ASA calculations of the equilibrium volume, 

Grüneisen constant, heat of formation of the γ-U-Zr solid solutions, as well as the bulk 

modulus and Debye temperature. The lattice vibration effects are accounted for within 

the so-called Debye-Grüneisen quasi-harmonic model [33, 34] and here evaluated at 300 

K. Both equilibrium volume and heat of formation of the γ-U-Zr solid solutions show a 

positive deviation from Vegard’s law that agrees well with the existence of a miscibility 

gap in the U-Zr phase diagram. One should notice that calculated heats of mixing of the 

γ-U-Zr solid solutions are in excellent agreement with data extracted from the 

experimental phase diagram by the use of CALPHAD methodology [35], which indicates 

the robustness of the ab initio approach used in the present calculations. For comparison, 

we also show the heats of formation of the γ-U-Zr for the U75Zr25, U50Zr50, and U25Zr75 

alloys calculated within FPLMTO-SQS technique. 
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We performed MC calculations of the decomposition curve for the γ-U-Zr solid 

solutions. The MC simulations are performed using the Metropolis algorithm [36] for a 

1728-site simulation box (12•12•12) with periodic boundary conditions. Figure 2 displays 

the calculated temperature of decomposition of the γ-U1-cZrc alloys within the wide range 

of composition. This curve has a maximum that is located somewhere between 20 and 30 

at. % of Zr. This maximum matches relatively well the location of the maximum on the 

experimental miscibility gap (~ 30 at.  % Zr) also shown in the figure. One should 

mention that that the decomposition curve indicates only the temperature of the phase 

transformation but tells nothing about the composition of the phases formed as a result. 

This information could be only found from the miscibility gap. 

 

4. Ground-state properties of the δ-UZr2 compound 

The C32 (AlB2) structure has two non-equivalent types of sublattice with 3 atoms per 

unit cell: sublattices of “Al-” (one site) and “B-” (two sites) types. As we mentioned in 

the Introduction, it is now believed that in the δ-UZr2 compound Zr atoms occupy the Al-

type position (0, 0, 0) of the hexagonal cell, and a random mixture of U and Zr atoms 

occupies the B-type positions (⅔, ⅓, ½) and (⅓, ⅔, ½). To confirm that this arrangement 

is actually the ground-state configuration of the δ-UZr2 compound, we performed EMTO 

calculations of the equilibrium lattice constant for three atomic configurations of the C32 

structure: (i) random distribution of U and Zr atoms on each of the three sites (the U⅓Zr⅔ 

“disordered” alloy); (ii) “complete’ ordering with U atoms occupying the Al-type 

sublattice and Zr atoms occupying the B-type sublattice; (iii) “partial” ordering that 

corresponds to experimental observation described in Introduction. Figure 3 shows the 
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total energy of the δ-UZr2 compound as a function of the Wigner-Seitz radius. One can 

see that the two types of ordering, “complete” and “partial”, are energetically favorable in 

comparison with the disordered configuration, however, the configuration (iii) is one that 

has the lowest total energy (the ground-state). 

We have also calculated the enthalpy of formation of the δ-UZr2 compound. We 

define this property as 

 

2

C32
f UZr U Zr

1 2H E E E
3 3

α α⎡ ⎤∆ = − +⎢ ⎥⎣ ⎦
,       (6)  

 

where 
2

C32
UZrE is the energy of the δ-UZr2 compound and α

UE  and α
ZrE are the energies of α-U 

and α-Zr, respectively. Present calculations reveal 
2

C32
UZrE = - 6.29 kJ/mol that is in fair 

agreement with experimental measurements of - 4.0 kJ/mol at T = 298 K [38, 39]. 

 

5. Stability of the δ-phase in the U-Zr system 

It is well established that under compression zirconium metal undergoes the 

following phase transformations: α-Zr (hcp) → ω-Zr (C32) → β-Zr (bcc) [8, 9, 40-42]. 

We performed FPLMTO calculations of the total energy of α-, ω-, and β-Zr phases as 

functions of atomic volume and results of these calculations are shown in Figure 4. 

According to the present calculations, the α → ω and ω → β phase transitions in Zr take 

place at 33 and 268 kbar, respectively, which are in a good accord with experimental 

measurements (see Table). One should also notice the significant scattering of the 

experimental data, especially for the α → ω transition.  
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Figure 5 (a) shows the s-, p-, and d-band occupations in α-Zr as a function of the 

Wigner-Seitz radius (FPLMTO calculations). As the Wigner-Seitz radius decreases (e.g., 

with increase of pressure), the occupation of the d-band goes up due to a loss of the s- 

and p-band electrons. In Figure 5 (b) we show the structural-energy difference obtained 

from canonical bands [43] as a function of d-band filling. One can see that as soon as the 

Zr d-band occupation increases under compression, hcp gradually transforms, initially to 

C32, and then to bcc.  

Next, we discuss the analogies with the U-Zr system. Figure 6 has two parts. The 

upper part shows how the d-band occupation of α-Zr changes under compression and the 

transition region (full black) spans betweens the lower and upper experimental bounds, 

21 kbar and 85 kbar (see Table), of the α → ω transformation. The hatched patch of the 

upper part of the plot shows the pressure region of the certain ω-phase stability in pure 

Zr. The lower part of this plot shows how the d-band occupation changes as a function of 

an increase in U composition in the U-Zr system. The hatched part of this part of the plot 

spans within the range of the homogeneity of the δ-U-Zr phase (18 – 37 at. % U [4]). One 

can see that at the upper pressure border of the α → ω  phase transition range in pure Zr 

(~ 85 kbar) its d-occupation almost reaches the same value as it has when composition of 

U, alloyed with α-Zr, reaches the value (~ 18 at. %, [4]) when the δ-UZr2 phase starts to 

form. Thus the present calculations confirm the hypothesis of Ref. [12] according to 

which the stabilization of the δ-UZr2 phase in the U-Zr system has the same origin as that 

of the ω-phase in pure zirconium under compression, namely, it is induced by an increase 

in d-band filling. 
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6. Conclusion 

In the present paper ab initio results on equilibrium properties are obtained for U-Zr 

alloys to understand the effectiveness of ab initio methods in describing actinide alloys. 

Ground-state properties of γ-U-Z solid solutions and the δ-UZr2 compound were 

calculated. Predicted temperature of decomposition of γ-U-Zr alloys is in a reasonable 

agreement with the γ-phase miscibility gap. Stabilization of the δ-UZr2 phase in the U-Zr 

system is explained in terms of an increase in d-band occupancy by the addition of U to 

Zr. These ab initio results will be used to build a completely theoretical phase diagram 

that can be compared with experimental and CALPHAD phase diagrams. This will serve 

as a template to investigate a mixture of U and Pu with minor actinides for which 

experimental data are lacking.  
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Captions 

Figure 1. The bulk modulus and Debye temperature (a); the heat of formation (b); the 

atomic volume and Grüneisen constant (c) of the γ-U-Zr alloys. 

Figure 2. Temperature of decomposition of the γ-U-Zr alloys. Experimental data on the 

miscibility gap are taken from Ref. [37]. 

Figure 3. The total energy of the δ-UZr2 compound for (i) - (iii) configurations (see text) 

as a function of the Wigner-Seitz radius. The equilibrium energy of the “partially’ order 

configuration  is used as the reference point and is set equal to zero. 

Figure 4. The total energy of hcp, C32, and bcc Zr as a function of the atomic volume. 

Figure 5. The change in band occupations in Zr under compression (a); the energy 

difference obtained from canonical d-bands calculations as a function of d-band 

occupancy (b). The hcp phase is used as the reference point and is set equal to zero. 

Figure 6. Comparison of d-band occupancy in α-Zr as a function of compression with d-

band occupancy in the U-Zr alloys as a function of U concentration. 
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Table. Experimental and theoretical (FPLMTO) pressure of the α → ω and ω → β phase 

transitions in Zr. 

Source α → ω transition (kbar) Source ω→β transition (kbar) 

Ref. [8] 21 - 60 Ref. [9] 320 

Ref. [40] 33 - 67 Ref. [41] 330 

Ref. [42] 23 - 85 Ref. [42] 240 - 310 

FPLMTO 33 FPLMTO 268 
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800

850

900

950

1000

1050

1100

1150

220

230

240

250

260

270

280

290

300

310

320

330

340

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T = 300 K

B
ul

k 
M

od
ul

us
 ( 

kb
ar

 )

D
ebye T

em
perature (K

)

Mole Fraction of Zr

(a)

 
 
Figure 1a. 
 
 
 
 
 
 
 
 



 17

 
 
 
 
 
 
 
 

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T = 0 K

FPLMTO (SQS)
KKR-ASA-CPA
CALPHAD

H
ea

t o
f F

or
m

at
io

n 
( k

J/
m

ol
e 

)

Mole Fraction of Zr

(b)

 
 
Figure 1 b. 
 
 
 
 
 
 
 



 18

 
 
 
 

21.0

21.5

22.0

22.5

23.0

23.5

24.0

2.37

2.38

2.39

2.40

2.41

2.42

2.43

2.44

2.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T = 300 K

V
ol

um
e 

( A
3  )

G
runeisen C

onstant

Mole fraction of Zr

(c)

 
 
Figure 1c. 
 
 
 
 
 
 
 
 
 
 
 
 



 19

 
 
 
 
 

750

1000

1250

1500

0.1 0.2 0.3 0.4 0.5 0.6

Decomposition curve (theory)
Miscibility gap (experiment)

C
ri

tic
al

 te
m

pe
ra

tu
re

, T
c ( 

K
 )

Mole Fraction of Zr
 

 
Figure 2. 
 
 
 
 
 
 
 
 
 
 



 20

 

0

5

10

15

20

25

30

35

40

3.2 3.25 3.3 3.35 3.4

Configuration (iii)
Configuration (ii)
Configuration (i)En

er
gy

 ( 
m

R
y/

at
om

 )

Wigner-Seitz Radius ( a.u. ) 

δ-UZr
2
 (C32)

 
 
Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 21

 

0

0.01

0.02

0.03

0.04

18 19 20 21 22 23 24 25 26

T
ot

al
 E

ne
rg

y 
( R

y/
at

om
 )

Atomic Volume ( A3 )

Zr

33 kbar

268 kbar

hcp

C32

bcc

 
 
Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 22

 
 

-0.10

-0.05

0.00

0.05

0.10

0.15

3.2 3.25 3.3 3.35

Pressure (kbar)

s
p
d

B
an

d-
oc

cu
pa

tio
n 

C
ha

ng
e

Wigner-Seitz Radius (a.u.)

Zr

0316194130170

(a)

 
 
Figure 5 a. 
 
 
 
 
 
 
 
 
 
 



 23

 
 

0 1 2 3 4 5 6

C
an

on
ic

al
 E

ne
rg

y 
( A

rb
. U

ni
ts

 )

d-band Occupation

BCC

C32

HCP

Zr

(b)

 
 
Figure 5 b. 
 
 
 
 
 
 
 
 
 
 
 
 



 24

 

0.00

0.05

0.10

0.15

0 0.1 0.2 0.3 0.4 0.5

d-
ba

nd
 O

cc
up

at
io

n 
C

ha
ng

e

Mole Fraction of U

0 31 61 94 130 170
Pressure ( kbar )

C32

C32

Transition
Region

Pure Zr

U-Zr Alloys

hcp

hcp

Zr

 
 
Figure 6. 
 


